Environment and Ecology

environment - ecology - nature - habitat - gaia - permaculture - systems - sustainability ...

  • Increase font size
  • Default font size
  • Decrease font size
Home Ecological Systems Theory The Rise of Systems Theory in Ecology

The Rise of Systems Theory in Ecology

E-mail Print PDF

Ecology Revisited pp 183-194

The Rise of Systems Theory in Ecology


The emergence of systems theory in ecology, particularly during the 1950s and 1960s, was accompanied by the hope that ecology might turn into an exact science with prognostic potential and a set of uniform theoretical foundations. The impact of systems theory on ecology was manifested mainly in the formulation and development of ecosystem theory. The widely-held view is that ecosystem theory is concerned primarily with units comprising communities of organisms of various species and the abiotic environment of these communities. The components of systems are seen to interact with one another.


System Concept Ecosystem Approach Abiotic Environment Ecosystem Research General System Theory
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Allen TFH, Starr TB (1982) Hierarchy: perspectives in ecological complexity. University of Chicago Press, ChicagoGoogle Scholar
  2. Bertalanffy L (1926) Zur Theorie der organischen ‘Gestalt’. Roux’ Archiv: 413–416Google Scholar
  3. Bertalanffy L (1929) Vorschlag zweier sehr allgemeiner biologischer Gesetze. Biol. Zentralbl. 49: 83–111Google Scholar
  4. Bertalanffy L (1932) Theoretische Biologie, Bd. I: Allgemeine Theorie, Physikochemie, Aufbau und Entwicklung des Organismus. Borntraeger, BerlinGoogle Scholar
  5. Bertalanffy L (1949) Das biologische Weltbild. Die Stellung des Lebens in Natur und Wissenschaft. Francke, BernGoogle Scholar
  6. Bertalanffy L (1950) An Outline of General System Theory. Brit. J. Philos. Sci. 1:134–165CrossRefGoogle Scholar
  7. Bertalanffy L (1951) General System Theory: A New Approach to Unity of Science. Problems of General System Theory. Human Biology 23/4:302–312Google Scholar
  8. Bertalanffy L (1955) General System Theory. Main Currents in Modern Thought 11:75–83Google Scholar
  9. Bertalanffy L (1968) General system theory: foundations, development applications. George Braziller, New YorkGoogle Scholar
  10. Botkin DB (1990) Discordant harmonies: a new ecology for the twenty-first century. Oxford Univ. Pr., New YorkGoogle Scholar
  11. Bormann FH & Likens GE (1967) Nutrient cycling. Science 155(3461): 424–429PubMedCrossRefGoogle Scholar
  12. Boulding KE (1941) Economic analysis. Harper & Brothers, New YorkGoogle Scholar
  13. Boulding KE (1953) Toward a general theory of growth. Canadian J. o. Economics and Political Science 19/3:326–340Google Scholar
  14. Boulding KE (1956) Generals systems theory. The skeleton of science. Management Science 2:197–208CrossRefGoogle Scholar
  15. Churchman CW, Ackoff RL, Arnoff EL (1957) Introduction to operations research. Wiley, New YorkGoogle Scholar
  16. Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington, Washington, DCGoogle Scholar
  17. Clements FE (1936) Nature and structure of the climax. J. of Ecology 24:252–284Google Scholar
  18. Clements FE, Shelford VE (1939) Bio-ecology. Wiley, New YorkGoogle Scholar
  19. Davidson M (1983) Uncommon sense: the life and thought of Ludwig von Bertalanffy, father of general system theory. JP Tarcher, Los AngelesGoogle Scholar
  20. Ellenberg H (ed) (1971) Integrated experimental ecology: methods and results of ecosystem research in the German Solling Project. Springer, BerlinGoogle Scholar
  21. Ellenberg H (ed) (1986) Ökosystemforschung. Ergebnisse des Sollingprojektes, 1966–1986. Ulmer, StuttgartGoogle Scholar
  22. Engelberg J, Boyarsky LL (1979) The noncybernetic nature of ecosystems. Am Nat 114(3):317–324CrossRefGoogle Scholar
  23. Friederichs K (1927) Grundsätzliches über die Lebenseinheiten höherer Ordnung und den ökologischen Einheitsfaktor. Naturwissenschaften 8:153–157, 182–186CrossRefGoogle Scholar
  24. Friederichs K (1934) Vom Wesen der Ökologie. – Sudhoffs Arch. Gesch. d. Medizin u. Naturwissens 27 (3): 277–285Google Scholar
  25. Friederichs K (1937) Ökologie als Wissenschaft von der Natur oder biologische Raumforschung. Barth, LeipzigGoogle Scholar
  26. Frontier S, Leprêtre A (1998) Développements récents en théorie des écosystèmes. Ann. Inst. océanogr. Paris 74(1): 43–87Google Scholar
  27. Gams H (1918) Prinzipienfragen der Vegetationsforschung. Ein Beitrag zur Begriffsklärung und Methodik der Biocoenologie. Naturf. Gesellschaft Zürich. Vierteljahresschr, 63:293–493Google Scholar
  28. Gerard RW (1940) Unresting Cells. Harper & Brothers, New YorkGoogle Scholar
  29. Gerard RW (1953) The Organismic view of society. Chicago Behavioral Science Publications 1: 12–18Google Scholar
  30. Gleason HA (1917) The structure and development of the plant association. Bull Torrey Bot Club 44:463–481CrossRefGoogle Scholar
  31. Gleason HA (1926) The individualistic concept of the plant association. Bull Torrey Bot Club 53:7–26CrossRefGoogle Scholar
  32. Golley FB (1993) A history of the ecosystem concept in ecology: more than the sum of the parts. Yale University Press, New Haven/LondonGoogle Scholar
  33. Hagen JB (1992) An entangled bank: the origins of ecosystems. Chapman & Hall, New YorkGoogle Scholar
  34. Hall CAS, Day J (eds) (1977) Ecosystem modeling in theory and practice. Wiley, New YorkGoogle Scholar
  35. Hall AD, Fagen RE (1956) Definition of System. General System, 118–28Google Scholar
  36. Hammond D (2003) The science of synthesis: exploring the social implications of General Systems Theory. Univ. Pr. of Col., ColoradoGoogle Scholar
  37. Hauhs M, Lange H (2003) Informationstheorie und Ökosysteme. Handbuch der Umweltwissenschaften. Ecomed, München: 1–22Google Scholar
  38. Heims SJ (1993) Constructing a social science for postwar America: the cybernetics group, 1946 – 1953. MIT Press, CambridgeGoogle Scholar
  39. Higashi M, Burns TP (eds) (1991) Theoretical studies of ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  40. Hutchinson GE (1948) Circular causal systems in ecology. Annals of the New York Academy of Sciences 50:221–246PubMedCrossRefGoogle Scholar
  41. Jax K (1998) Holocoen and ecosystem: on the origin and historical consequences of two concepts. J. Hist. Biology, 31:113–142CrossRefGoogle Scholar
  42. Jax K (2002) Die Einheiten der Ökologie. Analyse, Methodenentwicklung und Anwendung in Ökologie und Naturschutz. Lang, Frankfurt/MGoogle Scholar
  43. Jones CG, Lawton JH (1995) Linking species and ecosystems. Chapman & Hall, New YorkGoogle Scholar
  44. Jørgensen SE (2000) A general outline of thermodynamic approaches to ecosystem theory. In: Jørgensen S, Müller F (eds) Handbook of ecosystem theories and management. Lewis, London/New York/Washington, DCGoogle Scholar
  45. Jørgensen SE, Müller F (2000) Handbook of ecosystem theories and management. Lewis, London/New York/Washington, DCGoogle Scholar
  46. Kay JJ (2000) Ecosystems as self-organising holarchic open systems: narratives and the second law of thermodynamics. In: Jørgensen S, Müller F (eds) Handbook of ecosystem theories and management. Lewis, London/New York/Washington, DCGoogle Scholar
  47. Köhler W (1920) Die physischen Gestalten in Ruhe und im stationären Zustand: eine naturphilosophische Untersuchung. Vieweg, BraunschweigGoogle Scholar
  48. Kwa C (1987) Representations of nature mediating between ecology and science policy: the case of the International Biological Programme. Social Studies of Science 17, 3, 413–442CrossRefGoogle Scholar
  49. Lamotte M, Bourliere F (1978) Problemes d’ écologie, structure et fonc-tionnement des écosystèmes terrestres. Masson, ParisGoogle Scholar
  50. Lotka, AJ (1925) The elements of physical biology. Williams & Wilkins, BaltimoreGoogle Scholar
  51. Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:339–418Google Scholar
  52. Likens GE, Bormann FH, Pierce RS, Eaton JS, Johnson NM (1977) Biogeochemistry of a forested ecosystem. Springer, New YorkGoogle Scholar
  53. Lilienfeld R (1978) The rise of systems theory. Wiley, New YorkGoogle Scholar
  54. Margalef R (1958) Information theory in ecology. YearB Soc Gen Syst Res 3:36–71Google Scholar
  55. Margalef R (1968) Perspectives in ecological theory. University of Chicago Press, Chicago, pp 1–25Google Scholar
  56. Maturana HR & Varela FJ (1987) Der Baum der Erkenntnis: die biologischen Wurzeln des menschlichen Erkennens. Scherz Verlag, BernGoogle Scholar
  57. McIntosh RP (1995) The background of ecology: concept and theory. Cambridge University Press, CambridgeGoogle Scholar
  58. McIntosh RP (1995) H. A. Gleason’s ‘Individualistic concept’ and theory of animal communities: a continuing controversy. - Biol. Rev., 70:317–357Google Scholar
  59. Müller K (1996) Allgemeine Systemtheorie. Studien zur Sozialwissenschaft 164. OpladenGoogle Scholar
  60. Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton Univ. Press, Princeton, NJGoogle Scholar
  61. Nielsen SN (2000) Ecosystems as information systems. In: Jørgensen S, Müller F (eds) Handbook of ecosystem theories and management. Lewis, London/New York/Washington, DCGoogle Scholar
  62. Odum E (1953, 1959, 1971) Fundamentals of ecology. Saunders, PhiladelphiaGoogle Scholar
  63. Odum HT (1956) Primary production in flowing waters. Limnology and Oceanography 1:102–117CrossRefGoogle Scholar
  64. Odum EP (1969) The strategy of ecosystem development: an understanding of ecological succession provides a basis for resolving man’s conflict with nature. Science 164:262–270PubMedCrossRefGoogle Scholar
  65. Odum HT (1971) Environment, power and society. Wiley, LondonGoogle Scholar
  66. O’Neill RV, DeAngelis DL, Waide JB, Allen TFH (1986): A hierarchical concept of ecosystems. Princeton Univ. Pr., Princeton, NJGoogle Scholar
  67. Parsons T (1937) The structure of social action. McGraw-Hill, New YorkGoogle Scholar
  68. Pace ML, Groffman PM (eds) (1998) Successes, limitations, and frontiersn in ecosystem science. Springer, New YorkGoogle Scholar
  69. Patten BC (1959) An introduction to the cybernetics of the ecosystem: the trophic dynamic aspect. Ecology 40:221–231CrossRefGoogle Scholar
  70. Patten BC, Odum EP (1981) The cybernetic nature of ecosystems. Am Nat 118:886–895CrossRefGoogle Scholar
  71. Peus F (1954) Auflösung der Begriffe “Biotop” und “Biozönose”. Deutsche Entomologische Zeitschrift N F 1:271–308CrossRefGoogle Scholar
  72. Phillips J (1934,1935) Succession, development, the climax, and the complex organism: an analysis of concepts. Part 1–3. J Ecol 22:554–571, 23: 210–246¸ 3: 488–508CrossRefGoogle Scholar
  73. Pias C & Foerster H (eds) (2003) Cybernetics: the Macy-Conferences 1946–1953. Diaphanes, ZürichGoogle Scholar
  74. Pomeroy LR, Alberts JJ (eds) (1988) Concepts of ecosystem ecology. Springer New YorkGoogle Scholar
  75. Prigogine I (1955) Introduction to thermodynamics of irreversible processes. Thomas, SpringfieldGoogle Scholar
  76. Ramensky LG (1926) Die Gesetzmäßigkeiten im Aufbau der Pflanzendecke. Botanisches Centralblatt N F 7:453–455Google Scholar
  77. Rapoport A (1947) Mathematical theory of motivation of interactions of two individuals. Bulletin of Mathematical Biophysics 9,1:17–27CrossRefGoogle Scholar
  78. Rapoport A (1950) Science and the goals of man: a study in semantic orientation. Harper, New YorkGoogle Scholar
  79. Recknagel F (ed) (2003) Ecological informatics: understandig ecology by biologically-inspired computation. Springer, BerlinGoogle Scholar
  80. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana, IllinoisGoogle Scholar
  81. Schwarz AE (1996) Aus Gestalten werden Systeme: Frühe Systemtheorie in der Biologie. In: Mathes K, Breckling B, Eckschmitt K (eds) Systemtheorie in der Ökologie. Landsberg, pp 35–45Google Scholar
  82. Tansley AG (1935) The Use and abuse of vegetational concepts and terms. Ecology 16(3):284–307CrossRefGoogle Scholar
  83. Taylor P (1988) Technocratic optimism, H.T. Odum, and the partial transformation of ecological metaphor after World War II. – J. Hist. Biol., 21(2):213–244Google Scholar
  84. Thienemann A, Kieffer JJ (1916) Schwedische chironomiden. Arch. hydrobiol. 2(Suppl):489Google Scholar
  85. Tobey RC (1981) Saving the prairies. University of Carlifonia, BerkeleyGoogle Scholar
  86. Trepl L (1987) Geschichte der Ökologie. Vom 17. Jahrhundert bis zur Gegenwart. Athenäum, Frankfurt a. M.Google Scholar
  87. Ulanowicz RE (1997) Ecology, the ascendent perspective. Columbia University Press, New YorkGoogle Scholar
  88. Vogt KA, Gordon JC, Wargo JP, Vogt DJ, Asbjorsen H, Palmiotto PA, Clark HJ, O’Hara JL, William S-K, Toral P-W, Larson B, Tortoriello D, Perez J, Marsh A, Corbett M, Kaneda K, Meyerson F, Smith D (1997) Ecosystems: balancing science with management. Springer, New YorkGoogle Scholar
  89. Voigt A (2001) Ludwig von Bertalanffy: Die Verwissenschaftlichung des Holismus in der Systemtheorie. Verhandlungen zur Geschichte und Theorie der Biologie 7:33–47Google Scholar
  90. Volterra V (1926) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. Accad. Lincei series 6, 2(36):31–113Google Scholar
  91. Weil A (1999) Über den Begriff des Gleichgewichts in der Ökologie - ein Typisierungsvorschlag. Unversitätsverlag, TU Berlin, BerlinGoogle Scholar
  92. Wiener N (1948) Cybernetics or control and communication in the animal and the machine. Wiley, New YorkGoogle Scholar
  93. Worster D (1994) Nature’s economy: a history of ecological ideas. Camb. Univ. Pr., CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

About this chapter

Cite this chapter as:
Voigt A. (2011) The Rise of Systems Theory in Ecology. In: Schwarz A., Jax K. (eds) Ecology Revisited. Springer, Dordrecht
  • First Online 12 March 2011
  • DOI https://doi.org/10.1007/978-90-481-9744-6_15
  • Publisher Name Springer, Dordrecht
  • Print ISBN 978-90-481-9743-9
  • Online ISBN 978-90-481-9744-6
  • eBook Packages Biomedical and Life Sciences
Last Updated on Thursday, 20 June 2019 22:13  

Choose Language